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Abstract. The mutual relationship of the Heisenberg uncertainty relations, two recently derived uncertainty relations, the
Robertson–Schrödinger uncertainty relation and the inequality for the Fisher information is discussed.
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HEISENBERG UNCERTAINTY RELATIONS

Similarly to [1, 2, 3] we write the wave function ψ in the form

ψ = e(is1−s2)/h̄, (1)

where s1 = s1(x, t) and s2 = s2(x, t) are real functions of the coordinate x and time t. The Heisenberg uncertainty
relation for the coordinate x and momentum p has the form

⟨(∆x)2⟩⟨(∆p)2⟩ ≥ h̄2

4
, (2)

where
⟨(∆x)2⟩=

∫
(x−⟨x⟩)2|ψ|2dx, ⟨(∆p)2⟩=

∫ ∣∣(p̂−⟨p̂⟩
)
ψ
∣∣2dx, (3)

p̂ = −ih̄(∂/∂x), ⟨⟩ denotes the usual quantum-mechanical mean value and integration is carried out from minus
infinity to plus infinity.

Using Eqs. (1)–(3) we get [1, 2, 3]
⟨(∆p)2⟩= ⟨(∆p1)

2⟩+ ⟨(∆p2)
2⟩, (4)

where

⟨(∆p1)
2⟩=

∫ (
∂ s1

∂x
−
⟨

∂ s1

∂x

⟩)2

e−2s2/h̄dx, ⟨(∆p2)
2⟩=

∫ (
∂ s2

∂x

)2

e−2s2/h̄dx. (5)

We see that the mean square deviation of the momentum ⟨(∆p)2⟩ can be split into two parts. The first part ⟨(∆p1)
2⟩

can be interpreted within the statistical generalization of classical mechanics in which the classical momentum
p = ∂S/∂xcl where S is the classical action and xcl is the classical coordinate is replaced by ∂ s1/∂x and the probability
density ρ = |ψ|2 = exp(−2s2/h̄) is introduced. The second part ⟨(∆p2)

2⟩ is proportional to one of the most important
quantities appearing in mathematical statistics — the Fisher information I (see e.g. [4, 5])

I =
∫ 1

ρ

(
∂ρ
∂x

)2

dx =
4
h̄2

∫ (
∂ s2

∂x

)2

e−2s2/h̄dx =
4
h̄2 ⟨(∆p2)

2⟩. (6)

By using the Schwarz inequality (u,u)(v,v) ≥ |(u,v)|2, where (u,v) =
∫ ∞
−∞ u∗vdx, u and v are complex functions and

the star denotes the complex conjugate, it is easy to derive the inequality known from mathematical statistics (see e.g.
[3, 4, 5]) ∫

(x−a)2ρ dx I ≥ 1, (7)

where a is a real number.
We note that for ⟨(∆p1)

2⟩ = 0 the Heisenberg uncertainty relation (2) is equivalent to inequality (7) for the Fisher
information with a = ⟨x⟩.
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TWO NEW UNCERTAINTY RELATIONS

Now we show that the Heisenberg uncertainty relation can be replaced by two uncertainty relations for ⟨(∆p1)
2⟩ and

⟨(∆p2)
2⟩ (see also [1, 2, 3]).

First, we take

u = ∆x
√

ρ, v =
(

∂ s1

∂x
−
⟨

∂ s1

∂x

⟩)
√

ρ. (8)

Then, the Schwarz inequality yields the first uncertainty relation

⟨(∆x)2⟩⟨(∆p1)
2⟩ ≥

[∫
∆x

(
∂ s1

∂x
−
⟨

∂ s1

∂x

⟩)
e−2s2/h̄dx

]2

. (9)

The function ∂ s1/∂x in the last integral corresponds to the classical momentum ∂S/∂xcl and this relation has the usual
meaning known from mathematical statistics [3]. Depending on the functions s1 and s2, the square of the covariance
of the coordinate and momentum at the right-hand side of this relation can have arbitrary values greater than or equal
to zero.

The second uncertainty relation can be obtained in an analogous way for

u = ∆x
√

ρ, v =
(

∂ s2

∂x
−
⟨

∂ s2

∂x

⟩)
√

ρ (10)

with the result

⟨(∆x)2⟩⟨(∆p2)
2⟩ ≥

[∫
(x−⟨x⟩)

(
∂ s2

∂x
−
⟨

∂ s2

∂x

⟩)
e−2s2/h̄dx

]2

. (11)

The right-hand side of this relation can be simplified [1, 2, 3] and yields the second uncertainty relation

⟨(∆x)2⟩⟨(∆p2)
2⟩ ≥ h̄2

4
. (12)

This uncertainty relation follows from the Schwarz inequality in a similar way as the first one, however, the covariance
(u,v) is in this case constant and equals h̄/2 > 0 independently of the concrete form of the function s2. We note also
that relation (12) is for ⟨x⟩= a equivalent to relation (7) for the Fisher information.

We see that the Heisenberg uncertainty relation (2) can be replaced by two more detailed uncertainty relations (9)
and (12). First uncertainty relation (9) can be understood as the standard statistical inequality between the coordinate
x and momentum represented by the function p = ∂ s1/∂x. Second uncertainty relation (12) can be understood as the
standard statistical inequality, too. However, because of the specific form of the covariance (u,v) which equals h̄/2
independently of s2, the left-hand side of this relation must be greater than or equal to h̄2/4.

We note that the sum of uncertainty relations (9) and (12) is equivalent to the Robertson-Schrödinger relation for the
coordinate and momentum [3]. The Heisenberg uncertainty relation (2) can be obtained from the sum of the uncertainty
relations by neglecting the first term on its right-hand side. Therefore, uncertainty relations (9) and (12) are stronger
than the corresponding Heisenberg and Robertson-Schrödinger uncertainty relations.

In the following two sections, two examples of uncertainty relations (9) and (12) are given.

FREE PARTICLE

We assume that the wave function of a free particle is at time t = 0 described by the gaussian wave packet

ψ(x,0) =
1√
a
√

π
e−x2/(2a2)+ikx (13)

with the energy

E =
h̄2

4ma2 +
h̄2k2

2m
, (14)
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where a > 0 and k are real constants. By solving the time Schrödinger equation we get

ψ(x, t) =
1√
a
√

π

√
1− ih̄t

ma2√
1+

(
h̄t

ma2

)2
exp

−
(
x− h̄k

m t
)2

2a2

[
1+

(
h̄t

ma2

)2
] + i

kx+ h̄tx2

2ma4 − h̄k2

2m t

1+
(

h̄t
ma2

)2


 . (15)

The corresponding functions s1 and s2 equal

s1(x, t) = h̄k
x+ h̄tx2

2ma4k −
h̄k
2m t

1+
(

h̄t
ma2

)2 − h̄arctan
h̄t

ma2 , (16)

s2(x, t) =
h̄
2


(
x− h̄k

m t
)2

a2

[
1+

(
h̄t

ma2

)2
] − ln

1

a
√

π
√

1+
(

h̄t
ma2

)2

 . (17)

As it could be anticipated, the mean momentum and the mean coordinate have the form

⟨p̂⟩=
⟨

∂ s1

∂x

⟩
= h̄k, ⟨x⟩= h̄k

m
t. (18)

The mean square deviations of the coordinate and momentum are given by the equations

⟨(∆x)2⟩= a2

2

[
1+

(
h̄t

ma2

)2
]

(19)

and

⟨(∆p1)
2⟩= h̄4t2

2m2a6

[
1+

(
h̄t

ma2

)2
] , ⟨(∆p2)

2⟩= h̄2

2a2

[
1+

(
h̄t

ma2

)2
] . (20)

The left–hand side and the right-hand side of relation (9) have the same value

⟨(∆x)2⟩⟨(∆p1)
2⟩=

⟨
∆x

(
∂ s1

∂x
−
⟨

∂ s1

∂x

⟩)⟩2

=
h̄4t2

4m2a4 . (21)

Therefore, uncertainty relation (9) is fulfilled with the equality sign.
Calculating the left–hand side of uncertainty relation (12) we obtain

⟨(∆x)2⟩⟨(∆p2)
2⟩= h̄2

4
(22)

and see that uncertainty relation (12) is fulfilled with the equality sign, too.

LINEAR HARMONIC OSCILLATOR

We assume that the wave function of the linear harmonic oscillator in the coherent state is at time t = 0 described by
the gaussian wave packet

ψ(x,0) =
(

mω
h̄π

)1/4

e−(ξ−ξ0)
2/2, (23)

where

ξ =

√
mω
h̄

x, ξ0 =

√
mω
h̄

x0 (24)
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and x0 is the center of the packet. The corresponding energy E equals

E =
mω2x2

0
2

+
h̄ω
2

. (25)

By solving the time Schrödinger equation we get

ψ(x, t) =
(

mω
h̄π

)1/4

e−iωt/2ei(mω/h̄)[x2
0 cos(ωt)−2xx0]sin(ωt)/2e−(mω/h̄)[x−x0 cos(ωt)]2/2. (26)

The corresponding functions s1 and s2 equal

s1(x, t) =−h̄ωt/2+(mω)[x2
0 cos(ωt)−2xx0]sin(ωt)/2, (27)

s2(x, t) =
h̄
4
(ln h̄+ lnπ − lnm− lnω)+

mω
2

[x− x0 cos(ωt)]2. (28)

The mean momentum and the mean coordinate have the same form as in classical mechanics

⟨p̂⟩=
⟨

∂ s1

∂x

⟩
=−mωx0 sin(ωt), ⟨x⟩= x0 cos(ωt). (29)

The mean square deviations of the coordinate and momentum are given by the equations

⟨(∆x)2⟩= h̄
2mω

, ⟨(∆p1)
2⟩= 0, ⟨(∆p2)

2⟩= h̄mω
2

. (30)

It means that uncertainty relations (9) and (12) have the form

0 = 0, ⟨(∆x)2⟩⟨(∆p2)
2⟩= h̄2

4
. (31)

The equality sign in uncertainty relations (9) and (12) is obtained if the functions s1 and s2 are quadratic functions
of x of the form p(t)x2 +q(t)x+ r(t), where real coefficients p(t), q(t) and r(t) can depend on time [3]. All functions
s1 and s2 given by Eqs. (16), (17), (27) and (28) fulfill this condition.

It is worth to notice that this condition for relation (12) is independent of the form of the function s1. Therefore,
the equality sign in this relation can be achieved for much larger class of the wave functions than in case of the
Heisenberg or Robertson–Schrödinger uncertainty relations. It is interesting not only from theoretical but also from
the experimental point of view.

This work was supported by the MSMT grant No. 0021620835 of the Czech Republic.

CONCLUSIONS

Heisenberg and Robertson–Schrödinger uncertainty relations known from quantum mechanics follow from two
stronger uncertainty relations (9) and (12).

First relation (9) can be understood as the inequality for the product of variances of the deviation of the coordinate
x and momentum represented by the function p = ∂ s1/∂x from their mean values which must be greater than or equal
to the square of the covariance of these quantities.

Second relation (12) is equivalent to the above mentioned inequality (7) for the Fisher information. It can be also
understood as the inequality between the variances and covariances of the deviation of the coordinate x and the function
∂ s2/∂x from their mean values. However, the corresponding covariance is constant and equals h̄/2. The square of the
covariance then yields the constant h̄2/4 appearing at the right-hand side of the Heisenberg uncertainty relation.
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